MOLPRO Basis Query, basis=ECP28MDF_V5Z

-------------------------------------------------------------------------------
******************* Read_me_first *********************************************
*******************************************************************************
 Pseudopotentials of the Stuttgart/Cologne group
 (Revision: July 09, 2009)
*******************************************************************************

 The energy-consistent pseudopotentials of the Stuttgart/Cologne group are semi-
 local pseudopotentials adjusted to reproduce atomic valence-energy spectra.
 The adjustment of the pseudopotential parameters has been done in fully nume-
 rical calculations, valence basis sets have been generated a-posteriori via
 energy optimization. The complete set of potentials includes one-component
 (non-relativistic and scalar-relativistic) effective-core potentials (ECP),
 spin-orbit (SO) and core-polarization potentials (CPP); only the one-component
 ECPs are listed in full, in the present file. The energy-consistent pseudo-
 potentials are under continuous development and extension, for information
 contact:
 Michael Dolg (m.dolg@uni-koeln.de)
 Kirk A. Peterson (kipeters@wsu.edu)
 Peter Schwerdtfeger (p.a.schwerdtfeger@massey.ac.nz)
 Hermann Stoll (stoll@theochem.uni-stuttgart.de).

 Library keywords are of the form ECPnXY; n is the number of core electrons
 which are replaced by the pseudopotential, X denotes the reference system
 used for generating the pseudopotential (X=S: single-valence-electron ion;
 X=M: neutral atom), and Y stands for the theoretical level of the reference
 data (Y=HF: Hartree-Fock; Y=WB: quasi-relativistic; Y=DF: relativistic).
 For one- or two-valence electron atoms SDF is a good choice, while other-
 wise MWB or MDF is recommended. (For light atoms, or for the discussion
 of relativistic effects, the corresponding SHF, MHF pseudopotentials may
 be useful.) The same keyword applies to the set of pseudopotential para-
 meters and the corresponding optimized valence basis sets.

 For each pseudopotential, the keyword is immediately followed by 4 parameters:
 the number of core electrons, the number of l-projectors (lmax) in the one-
 component (non-relativistic or scalar-relativistic) ECP, the number of l-
 projectors (lmax') of the SO potential (if given; lmax'=0 otherwise), and
 the total number of parameters listed below the commentary line. The latter
 parameters provide information on V(lmax) first, and then for the semi-local
 one-component and SO potentials, V(l) and V'(l') respectively, in the order
 l=0, 1, 2, ..., lmax-1; l'=1, 2, ..., lmax'. For each V(l) or V'(l'), the
 number of terms of the form A(i)*r**(n(i)-2)*exp(-a(i)*r**2) is given first,
 and then the parameters specifying the individual terms in the sequence
 n(1),a(1),A(1);n(2),a(2),A(2);..... Note that the V'(l') are defined as
 radial prefactors of l*s terms, i.e., the difference of l+1/2 and l-1/2
 potentials, for a given l, is multiplied by 2/(2l+1).

 CPP parameters (if given) are included in the commentary line of the ECPs.
 The parameters are the core dipole polarizability, alpha, and the exponents,
 delta and ncut, of the cut-off function (1-exp(-delta*r**2)**ncut multiplying
 the operators of the polarizing field.

 For each valence basis set of a specified symmetry (s, p, d, ...),
 the number of exponents is specified first, then the number of recom-
 mended contractions and the contraction patterns (n.m defines the range
 of primitives to be contracted). On the following lines, the exponents 
 of the primitives are given first, and afterwards the sets of contraction
 coefficients.

  
********************* end *****************************************************
********************* References **********************************************

 Ref 1: P. Fuentealba, H. Preuss, H. Stoll, L. v. Szentpaly, Chem. Phys. Lett. 89, 418 (1982).
 Ref 2: L. v. Szentpaly, P. Fuentealba, H. Preuss, H. Stoll, Chem. Phys. Lett. 93, 555 (1982).
 Ref 3: P. Fuentealba, H. Stoll, L. v. Szentpaly, P. Schwerdtfeger, H. Preuss, J. Phys. B 16, L323 (1983).
 Ref 4: H. Stoll, P. Fuentealba, P. Schwerdtfeger, J. Flad, L. v. Szentpaly, H. Preuss, J. Chem. Phys. 81, 2732 (1984).
 Ref 5: P. Fuentealba, L. v. Szentpaly, H. Preuss, H. Stoll, J. Phys. B 18, 1287 (1985).
 Ref 6: U. Wedig, M. Dolg, H. Stoll, H. Preuss in Quantum Chemistry: The Challenge of Transition Metals and Coordination Chemistry, A. Veillard, Reidel, Dordrecht (1986), p.79.
 Ref 7: M. Dolg, U. Wedig, H. Stoll, H. Preuss, J. Chem. Phys. 86, 866 (1987).
 Ref 8: G. Igel-Mann, H. Stoll, H. Preuss, Mol. Phys. 65, 1321 (1988).
 Ref 9: M. Dolg, H. Stoll, H. Preuss, J. Chem. Phys. 90, 1730 (1989).
 Ref 10: P. Schwerdtfeger, M. Dolg, W.H.E. Schwarz, G.A. Bowmaker, P.D.W. Boyd, J. Chem. Phys. 91, 1762 (1989).
 Ref 11: M. Dolg, H. Stoll, A. Savin, H. Preuss, Theor. Chim. Acta 75, 173 (1989).
 Ref 12: D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, H. Preuss, Theor. Chim. Acta 77, 123 (1990).
 Ref 13: M. Kaupp, P. v. R. Schleyer, H. Stoll, H. Preuss, J. Chem. Phys. 94, 1360 (1991).
 Ref 14: W. Kuechle, M. Dolg, H. Stoll, H. Preuss, Mol. Phys. 74, 1245 (1991). 
 Ref 15: M. Dolg, P. Fulde, W. Kuechle, C.-S. Neumann, H. Stoll, J. Chem. Phys. 94, 3011 (1991).
 Ref 16: M. Dolg, H. Stoll, H.-J. Flad, H. Preuss, J. Chem. Phys. 97, 1162 (1992).
 Ref 17: A. Bergner, M. Dolg, W. Kuechle, H. Stoll, H. Preuss, Mol. Phys. 80, 1431 (1993).
 Ref 18: M. Dolg, H. Stoll, H. Preuss, Theor. Chim. Acta 85, 441 (1993).
 Ref 19: M. Dolg, H. Stoll, H. Preuss, R.M. Pitzer, J. Phys. Chem. 97, 5852 (1993).
 Ref 20: U. Haeussermann, M. Dolg, H. Stoll, H. Preuss, Mol. Phys. 78, 1211 (1993).
 Ref 21: W. Kuechle, M. Dolg, H. Stoll, H. Preuss, J. Chem. Phys. 100, 7535 (1994).
 Ref 22: A. Nicklass, M. Dolg, H. Stoll, H. Preuss, J. Chem. Phys. 102, 8942 (1995).
 Ref 23: T. Leininger, A. Nicklass, W. K"uchle, H. Stoll, M. Dolg and A. Bergner, Chem. Phys. Lett. 255, 274 (1996).
 Ref 24: T. Leininger, A. Nicklass, H. Stoll, M. Dolg, P. Schwerdtfeger, J. Chem. Phys. 105, 1052 (1996).
 Ref 25: T. Leininger, A. Berning, A. Nicklass, H. Stoll, H.-J. Werner, H.-J. Flad, Chem. Phys. 217, 19 (1997).
 Ref 26: F. Schautz, H.-J. Flad, M. Dolg, Theor. Chem. Acc. 99, 231 (1998).
 Ref 27: Y. Wang, M. Dolg, Theor. Chem. Acc. 100, 124 (1998).
 Ref 28: B. Metz, M. Schweizer, H. Stoll, M. Dolg, W. Liu, Theor. Chem. Acc. 104, 22 (2000).
 Ref 29: B. Metz, H. Stoll, M. Dolg, J. Chem. Phys. 113, 2563 (2000).
 Ref 30: J.M.L. Martin, A. Sundermann, J. Chem. Phys. 114, 3408 (2001).
 Ref 31: X. Cao, M. Dolg, J. Chem. Phys. 115, 7348 (2001) cf. also X. Cao, M. Dolg, J. Molec. Struct. (Theochem) 581, 139 (2002).
 Ref 32: H. Stoll, B. Metz, M. Dolg, J. Comput. Chem. 23, 767 (2002).
 Ref 33: X. Cao, M. Dolg, H. Stoll, J. Chem. Phys. 118, 487 (2003) cf. also X. Cao, M. Dolg, J. Molec. Struct. (Theochem) 673, 203 (2004).
 Ref 34: W. Kuechle, to be published.
 Ref 35: K.A. Peterson, J. Chem. Phys. 119, 11099 (2003).
 Ref 36: K.A. Peterson, D. Figgen, E. Goll, H. Stoll, M. Dolg, J. Chem. Phys. 119, 11113 (2003).
 Ref 37: D. Figgen, G. Rauhut, M. Dolg, H. Stoll, Chem. Phys. 311, 227 (2005).
 Ref 38: I.S. Lim, P. Schwerdtfeger, B. Metz, H. Stoll, J. Chem. Phys. 122, 104103 (2005).
 Ref 39: K.A. Peterson, C. Puzzarini, Theor. Chem. Acc. 114, 283 (2005).
 Ref 40: J. Yang, M. Dolg, Theor. Chem. Acc. 113, 212 (2005).
 Ref 41: I.S. Lim, H. Stoll, P. Schwerdtfeger, J. Chem. Phys. 124, 034107 (2006).
 Ref 42: K.A. Peterson, B.C. Shepler, D. Figgen, H. Stoll, J. Phys. Chem. A 110, 13877 (2006).
 Ref 43: K.A. Peterson, D. Figgen, M. Dolg, H. Stoll, J. Chem. Phys. 126, 124101 (2007).
 Ref 44: A. Moritz, X. Cao, M. Dolg, Theor. Chem. Acc. 117, 473 (2007).
 Ref 45: A. Moritz, X. Cao, M. Dolg, Theor. Chem. Acc. 118, 845 (2007).
 Ref 46: A. Moritz, M. Dolg, Theor. Chem. Acc. 121, 297 (2008).
 Ref 47: M. Huelsen, A. Weigand, M. Dolg, Theor. Chem. Acc. 122, 23 (2009).
 Ref 48: D. Figgen, K.A. Peterson, M. Dolg, H. Stoll, J. Chem. Phys. 130, 164108 (2009).
 Ref 49: A. Weigand, X. Cao, J. Yang, M. Dolg, Theor. Chem. Acc. 126, 117 (2010).
 Ref 50: M. Dolg and X. Cao, J. Phys. Chem. A 113, 12573 (2009).
 Ref 51: A. Weigand, X. Cao, T. Hangele, M. Dolg, J. Phys. Chem. A 118, 2519 (2014).
 Ref A1: J. Poppe
 Ref A2: P.Fuentealba, Dissertation (1984)
 Ref A3: P. Fuentealba (1988)
 Ref A4: G. Igel-Mann (1988)
 Ref A5: G. Igel-Mann, Doktorarbeit (1987)
 Ref A6: U. Haeussermann, Arbeitsbericht (1988)
 Ref A7: Dirk Andrae, Diplomarbeit (1989)
 Ref A8: W. Kuechle, Diplomarbeit (1993)
 Ref A9: A.Bergner, Arbeitsbericht (1990)
 Ref A10: M. Dolg, Dresden, (1997)
 Ref A11: P. Schwerdtfeger and R. Wesendrup, (1999)
 Ref A12: Xiaoyan Cao, Michael Dolg, Uni. Bonn (2002)

*******************************************************************************
****** end *******