<html><head></head><body><div style="color:#000; background-color:#fff; font-family:標楷體, dfkai-sb;font-size:16px"><div id="yui_3_16_0_ym19_1_1501908025152_24406"><span id="yui_3_16_0_ym19_1_1501908025152_26745">Dear Tatiana,</span></div><div id="yui_3_16_0_ym19_1_1501908025152_24406"><span><br></span></div><div id="yui_3_16_0_ym19_1_1501908025152_24406"><span id="yui_3_16_0_ym19_1_1501908025152_25093">thank you for your reply.</span></div><div id="yui_3_16_0_ym19_1_1501908025152_24406"><span id="yui_3_16_0_ym19_1_1501908025152_25827">I noticed that the eom-ccsd results depend on the basis set used.</span></div><div id="yui_3_16_0_ym19_1_1501908025152_24406"><span id="yui_3_16_0_ym19_1_1501908025152_25829">For example, for 2.2 state for He</span></div><div id="yui_3_16_0_ym19_1_1501908025152_24406"><span><br></span></div><div dir="ltr" id="yui_3_16_0_ym19_1_1501908025152_26075"><span id="yui_3_16_0_ym19_1_1501908025152_26076">         excit. en.    right dipole trans.<br> avtz  2.24               -0.18<br>avqz  1.89               -0.48<br>av5z  1.67                0.51<br>av6z  1.51                0.52<br>tav6z 0.85                0.28<br><br><br>Just in case my input:<br></span></div><div dir="ltr" id="yui_3_16_0_ym19_1_1501908025152_26077"> memory,50,m</div><div dir="ltr" id="yui_3_16_0_ym19_1_1501908025152_26078"> basis=av6z                                                                     </div><div dir="ltr" id="yui_3_16_0_ym19_1_1501908025152_26079"> geometry={he}                                                                  </div><div dir="ltr" id="yui_3_16_0_ym19_1_1501908025152_26080"> <br> hf                                                                           </div><div dir="ltr" id="yui_3_16_0_ym19_1_1501908025152_26084"> ccsd                                                                            </div><div dir="ltr" id="yui_3_16_0_ym19_1_1501908025152_26085"> eom,2.2,trans=1                                                                 </div><div dir="ltr" id="yui_3_16_0_ym19_1_1501908025152_26087"></div><div dir="ltr" id="yui_3_16_0_ym19_1_1501908025152_26086"> </div><div dir="ltr" id="yui_3_16_0_ym19_1_1501908025152_26086"><br></div><div dir="ltr" id="yui_3_16_0_ym19_1_1501908025152_26086">Am I doing anything wrong?</div><div id="yui_3_16_0_ym19_1_1501908025152_24406" dir="ltr"><span><br>Pablo<br><br><br></span></div> <div class="qtdSeparateBR"><br><br></div><div class="yahoo_quoted" style="display: block;"> <div style="font-family: 標楷體, dfkai-sb; font-size: 16px;"> <div style="font-family: HelveticaNeue, Helvetica Neue, Helvetica, Arial, Lucida Grande, sans-serif; font-size: 16px;"> <div dir="ltr"><font size="2" face="Arial"> On Friday, August 4, 2017 5:56 PM, Tatiana Korona <tania@tiger.chem.uw.edu.pl> wrote:<br></font></div>  <br><br> <div class="y_msg_container"><div dir="ltr">Dear Pablo,<br clear="none"><br clear="none">If you want to interpret excited states in EOM-CCSD in more detail, first you <br clear="none">can look at main excitations given in the form n.sym1 -> r.sym2 (for single <br clear="none">excitations), so you can interpret your 3.1 state according to the main <br clear="none">excitations listed under the excitation energy in the output. It is of course <br clear="none">sensible to print or save virtual orbitals, too, in order to recognize what type <br clear="none">of the orbital stays under "r.sym2".<br clear="none"><br clear="none">You can also make a population (or natural-orbital) analysis of the <br clear="none">excited-state density, see $molpro/example/hf_eom_prop.com<br clear="none"><br clear="none">or save densities in the CUBE format<br clear="none"><br clear="none">memory,2,m<br clear="none">gthresh,twoint=1.e-14,energy=1.d-8<br clear="none">gprint,orbital=10<br clear="none">basis=avdz<br clear="none"><br clear="none">geometry={<br clear="none">O<br clear="none">H1,O,r<br clear="none">H2,O,r,H1,th<br clear="none">}<br clear="none"><br clear="none">! MP2/vtz optimization:<br clear="none">r=0.959 Ang<br clear="none">th=103.5<br clear="none"><br clear="none">{hf<br clear="none">save,2100.2}<br clear="none"><br clear="none">{ccsd<br clear="none">dm,6000.2<br clear="none">eom,-5.1,-4.2,-4.3,-4.4,trans=1<br clear="none">}<br clear="none"><br clear="none"><br clear="none">cube,water11.cube;density,record=6000.2,state=1.1<br clear="none">cube,water23.cube;density,record=6000.2,state=2.3<br clear="none"><br clear="none"><br clear="none">and then use e.g. Gabedit to visualize the difference density (den2.3-den1.1).<br clear="none"><br clear="none">Best wishes,<br clear="none"><br clear="none">Tatiana<br clear="none"><br clear="none"><div class="yqt2975965764" id="yqtfd41843"><br clear="none">  On Thu, 3 Aug 2017, Pablo Avaria wrote:<br clear="none"><br clear="none">> Hello,<br clear="none">><br clear="none">><br clear="none">><br clear="none">> I need to calculate the excitation energies, dipole and quadrupole transitions moments<br clear="none">> between ground and excited states as well as between different excited states for an atom.First I ran some tests for He atom. <br clear="none">><br clear="none">> The EOM-CCSD method with the card "eom,-5.1,start=6000.2,save=6000.2,trans=1"<br clear="none">> gives the following excitation energies: Results for state  2.1: 20.936 eV Results for state  3.1: 37.788 eV<br clear="none">> The first one looks likes the optical forbidden transition 1s^2 1S - 1s2s 1S What about the state 3.1?<br clear="none">> The TD-DFT method with the card "df-tddft,orb=2100.2,nexcit=10"gives the following values 25.997 eV and 40.775 eV which I am not able to interpret. <br clear="none">> Are these methods applicable for my problem?Or should I use define each state manually with occ-closed-wf commands and use a method like CASSCF?<br clear="none">> Would it possible to get an example, let's say for dipole-allowed 1s^2 1S - 1s2p 1P transition?Thank you in advance for you help!<br clear="none">> Pablo</div><br clear="none">><br clear="none">><br clear="none"><br clear="none">Dr. Tatiana Korona <a shape="rect" href="http://tiger.chem.uw.edu.pl/staff/tania/index.html" target="_blank">http://tiger.chem.uw.edu.pl/staff/tania/index.html</a><br clear="none">Quantum Chemistry Laboratory, University of Warsaw, Pasteura 1, PL-02-093 Warsaw, POLAND</div><br><br></div>  </div> </div>  </div></div></body></html>