44.1 Introduction

Spin-orbit matrix elements and eigenstates can be computed using either the Breit-Pauli (BP) operator or spin-orbit pseudopotentials (ECPs). The state-interacting method is employed, which means that the spin-orbit eigenstates are obtained by diagonalizing $\hat H_{el} + \hat H_{SO}$ in a basis of eigenfunctions of $\hat H_{el}$. The full Breit-Pauli SO-operator can be used only for MCSCF wavefunctions. For MRCI wavefunctions, the full BP operator is used for computing the matrix elements between internal configurations (no electrons in external orbitals), while for contributions of external configurations a mean-field one-electron fock operator is employed. The error caused by this approximation is usually smaller than 1 cm$^{-1}$.

The program allows either the computation of individual spin-orbit matrix elements for a given pair of states, or the automatic setting-up and diagonalization of the whole matrix for a given set of electronic states. In the latter case, matrix elements over one-electron operators are also computed and transformed to the spin-orbit eigenstates (by default, the dipole matrix elements are computed; other operators can be specified on the GEXPEC or EXPEC cards, see section 6.13). Since it may be often sufficient to compute the spin-orbit matrix elements in a smaller basis than the energies, it is possible to replace the energy eigenvalues by precomputed values, which are passed to the spin-orbit program by the MOLPRO variable HLSDIAG.

molpro@molpro.net 2019-06-17