Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revisionBoth sides next revision
nuclear-electronic_orbital_method [2024/01/29 13:18] rmatalhasecknuclear-electronic_orbital_method [2024/01/29 13:29] – [Bibliography] rmatalhaseck
Line 202: Line 202:
 </code> </code>
  
-The following example shows a NEO calculation, where a user-defined mixed basis set is used. Thereby, the electronic basis set at the quantum nuclei is larger than for regular hydrogen atoms. The use of the **''NEOMIXBAS''** requieres the aditional definition of the **''elebas''** and **''elefit''** basis sets as shown below.+The following example shows a NEO calculation, where a user-defined mixed basis set is used. Thereby, the electronic basis set at the quantum nuclei is larger than for regular hydrogen atoms. The use of the **''NEOMIXBAS''** requires the additional definition of the **''elebas''** and **''elefit''** basis sets as shown below.
  
 <code> <code>
Line 251: Line 251:
 neoatden neoatden
 neomixbas neomixbas
 +}
 +</code>
 +
 +The example below shows the input for an adaptive NEO calculation, where the nuclear basis function centers convergence is set below 1E-5 bohr and a damping factor of 0.5 is applied.
 +
 +<code>
 +memory,50,m
 +gdirect
 +nosym
 +
 +geometry={
 +3
 +
 +H1  -3.5008791    1.2736107    0.7596000
 +H2  -4.9109791    1.2967107    0.1521000
 +O   -3.9840791    1.3301107   -0.0574000
 +}
 +
 +charge=0
 +
 +basis={
 +default=cc-pvdz
 +
 +set,nucbas
 +default=neo-basis
 +H1=pb4-f2
 +
 +set,nucfit
 +default=neo-basis
 +H1=10s10p10d10f
 +}
 +
 +qnuc,H1
 +
 +{df-neo-rhf,maxdis=10,maxit=500,df_basis=cc-pvdz
 +neoit,100
 +neothre,1.d-6
 +neothrie,1.d-8
 +neothrin,1.d-8
 +neothrd,1.d-8
 +neothrg,1.d-8
 +adaptive
 +adthres,1.d-5
 +addump,0.5
 } }
 </code> </code>
Line 267: Line 311:
 ===(L)DF-NEO-RHF=== ===(L)DF-NEO-RHF===
  
-Lukas Hasecke, and Ricardo A. Mata [[https://doi.org/10.21203/rs.3.rs-3231458/v1|Nuclear quantum effects made accessiblelocal-density fitting in multicomponent methods]] //Research Square// **2023** preprint. +Lukas Hasecke, and Ricardo A. Mata [[https://doi.org/10.1021/acs.jctc.3c01055|Nuclear Quantum Effects Made AccessibleLocal Density Fitting in Multicomponent Methods]] //J. Chem. Theory Comput.// **2023** //19// (22), 8223–8233.