References

All publications resulting from use of this program must acknowledge the following three references.

H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby and M. Schütz, WIREs Comput Mol Sci 2, 242–253 (2012), doi: 10.1002/wcms.82

Hans-Joachim Werner, Peter J. Knowles, Frederick R. Manby, Joshua A. Black, Klaus Doll, Andreas Heßelmann, Daniel Kats, Andreas Köhn, Tatiana Korona, David A. Kreplin, Qianli Ma, Thomas F. Miller, III, Alexander Mitrushchenkov, Kirk A. Peterson, Iakov Polyak, Guntram Rauhut, and Marat Sibaev J. Chem. Phys. 152, 144107 (2020). doi:10.1063/5.0005081

MOLPRO, version , a package of ab initio programs, H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, P. Celani, W. Györffy, D. Kats, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, S. J. Bennie, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, S. J. R. Lee, Y. Liu, A. W. Lloyd, Q. Ma, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, T. F. Miller III, M. E. Mura, A. Nicklass, D. P. O’Neill, P. Palmieri, D. Peng, T. Petrenko, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang, and M. Welborn, see https://www.molpro.net.

Some journals insist on a shorter list of authors; in such a case, the following should be used instead.

MOLPRO, version , a package of ab initio programs, H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, and others, see https://www.molpro.net.

Depending on which programs are used, the following references should be cited.

Integral evaluation (SEWARD)
R. Lindh, U. Ryu, and B. Liu, J. Chem. Phys. 95, 5889 (1991).

Integral-direct Implementation
M. Schütz, R. Lindh, and H.-J. Werner, Mol. Phys. 96, 719 (1999).

MCSCF/CASSCF:
H.-J. Werner and P. J. Knowles, J. Chem. Phys. 82, 5053 (1985);
P. J. Knowles and H.-J. Werner, Chem. Phys. Lett. 115, 259 (1985).
D. Kreplin, P. J. Knowles and H.-J. Werner, J. Chem. Phys. 150, 194106 (2019).
D. Kreplin, P. J. Knowles and H.-J. Werner, J. Chem. Phys. 152, 074102 (2020).
See also:

H.-J. Werner and W. Meyer, J. Chem. Phys. 73, 2342 (1980);
H.-J. Werner and W. Meyer, J. Chem. Phys. 74, 5794 (1981);
H.-J. Werner, Adv. Chem. Phys. LXIX, 1 (1987).

Internally contracted MRCI:
H.-J. Werner and P.J. Knowles, J. Chem. Phys. 89, 5803 (1988);
P.J. Knowles and H.-J. Werner, Chem. Phys. Lett. 145, 514 (1988);
K. R. Shamasundar, G. Knizia, and H.-J. Werner, J. Chem. Phys. 135, 054101 (2011). See also:

H.-J. Werner and E.A. Reinsch, J. Chem. Phys. 76, 3144 (1982);
H.-J. Werner, Adv. Chem. Phys. LXIX, 1 (1987).

Excited states with internally contracted MRCI:
P. J. Knowles and H.-J. Werner, Theor. Chim. Acta 84, 95 (1992).

Internally contracted MR-ACPF, QDVPT, etc:
H.-J. Werner and P. J. Knowles, Theor. Chim Acta 78, 175 (1990).

The original reference to uncontracted MR-ACPF, QDVPT, MR-AQCC are:
R. J. Gdanitz and R. Ahlrichs, Chem. Phys. Lett. 143, 413 (1988);
R. J. Cave and E. R. Davidson, J. Chem. Phys. 89, 6798 (1988);
P. G. Szalay and R. J. Bartlett, Chem. Phys. Lett. 214, 481 (1993).

Multireference perturbation theory (CASPT2/CASPT3):
H.-J. Werner, Mol. Phys. 89, 645 (1996);
P. Celani and H.-J. Werner, J. Chem. Phys. 112, 5546 (2000).
T. Shiozaki, W. Győrffy, P. Celani, and H.-J. Werner, J. Chem. Phys. 135, 081106 (2011).
W. Győrffy, T. Shiozaki, G. Knizia, and H.-J. Werner, J. Chem. Phys. 138, 104104 (2013).

Coupling of multi-reference configuration interaction and multi-reference perturbation theory, P. Celani, H. Stoll, H.-J. Werner and P. J. Knowles, Mol. Phys. 102, 2369 (2004).

Analytical energy gradients and geometry optimization
Gradient integral evaluation (ALASKA): R. Lindh, Theor. Chim. Acta 85, 423 (1993);
MCSCF gradients: T. Busch, A. Degli Esposti, and H.-J. Werner, J. Chem. Phys. 94, 6708 (1991);
MP2 and LMP2 gradients: A. El Azhary, G. Rauhut, P. Pulay, and H.-J. Werner, J. Chem. Phys. 108, 5185 (1998);
DF-LMP2 gradients: M. Schütz, H.-J. Werner, R. Lindh and F. R. Manby, J. Chem. Phys. 121, 737 (2004).
QCISD and LQCISD gradients: G. Rauhut and H.-J. Werner, Phys. Chem. Chem. Phys. 3, 4853 (2001);
CASPT2 gradients: P. Celani and H.-J. Werner, J. Chem. Phys. 119, 5044 (2003); T. Shiozaki, W. Győrffy, P. Celani, and H.-J. Werner, J. Chem. Phys. 135, 081106 (2011); W. Győrffy, T. Shiozaki, G. Knizia, and H.-J. Werner, J. Chem. Phys. 138, 104104 (2013).
DF-MP2-F12 and DF-CCSD(T)-F12 gradients: W. Győrffy, G. Knizia, and H.-J. Werner, J. Chem. Phys. 147, 214101 (2017); W. Győrffy and H.-J. Werner, J. Chem. Phys. 148, (2018).
Geometry optimization: F. Eckert, P. Pulay and H.-J. Werner, J. Comp. Chemistry 18, 1473 (1997);
Reaction path following: F. Eckert and H.-J. Werner, Theor. Chem. Acc. 100, 21, 1998.

Harmonic frequencies
G. Rauhut, A. El Azhary, F. Eckert, U. Schumann, and H.-J. Werner, Spectrochimica Acta 55, 651 (1999).
T. Hrenar, G. Rauhut, H.-J. Werner, J. Phys. Chem. A 110, 2060 (2006).

Potential energy surface generation and fitting (XSURF, POLY, PESTRANS)
P. Meier, D. Oschetzki, R. Berger, G. Rauhut, J. Chem. Phys. 140, 184111 (2014).
B. Ziegler, G. Rauhut, J. Chem. Phys. 144, 114114 (2016)
B. Ziegler, G. Rauhut, J. Chem. Phys. 149, 164110 (2018).
B. Ziegler, G. Rauhut, J. Chem. Theory Comput. 15, 4187 (2019).

Anharmonic frequencies (VSCF, VCI):
G. Rauhut, J. Chem. Phys. 121, 9313 (2004).
T. Hrenar, H.-J. Werner, G. Rauhut, J. Chem. Phys. 126, 134108 (2007).
G. Rauhut, T. Hrenar, Chem. Phys. 346, 160 (2008).
M. Neff, G. Rauhut, J. Chem. Phys. 131, 124129 (2009).
T. Mathea, G. Rauhut, J. Chem. Phys. 152, 194112 (2020).
T. Petrenko, G. Rauhut, J. Chem. Phys. 146, 124101 (2017).

Franck-Condon factors and electronic-vibrational spectra
T. Petrenko, G. Rauhut, J. Chem. Phys. 143, 234106 (2015).
T. Petrenko, G. Rauhut, J. Chem. Phys. 146, 124101 (2017).
T. Petrenko, G. Rauhut, J. Chem. Theory Comput. 13, 5515 (2017).
T. Petrenko, G. Rauhut, J. Chem. Phys. 148, 054306 (2018).

Ring-polymer instantons
J. O. Richardson and S. C. Althorpe, J. Chem. Phys. 131, 214106 (2009);
J. O. Richardson and S. C. Althorpe, J. Chem. Phys. 134, 054109 (2011);
J. O. Richardson, S. C. Althorpe and D. J. Wales, J. Chem. Phys. 135, 124109 (2011).

Full Configuration Interaction Quantum Monte Carlo
G. H. Booth, A. J. W. Thom, and A. Alavi, J. Chem. Phys. 131, 054106 (2009);
D. M. Cleland, G. H. Booth, and A. Alavi, J. Chem. Phys. 134, 024112 (2011);
G. H. Booth, D. M. Cleland, A. J. W. Thom, and A. Alavi, J. Chem. Phys. 135, 084104 (2011).

Møller-Plesset Perturbation theory (MP2, MP3, MP4):
Closed-shell Møller-Plesset Perturbation theory up to fourth order [MP4(SDTQ)] is part of the coupled cluster code, see CCSD.

Open-shell Møller-Plesset Perturbation theory (RMP2):
R. D. Amos, J. S. Andrews, N. C. Handy, and P. J. Knowles, Chem. Phys. Lett. 185, 256 (1991).

Coupled-Cluster treatments (QCI, CCSD, BCCD):
C. Hampel, K. Peterson, and H.-J. Werner, Chem. Phys. Lett. 190, 1 (1992) and references therein. The program to compute the perturbative triples corrections has been developed by M. J. O. Deegan and P. J. Knowles, Chem. Phys. Lett. 227, 321 (1994).

D. Kats and F. R. Manyby, J. Chem. Phys. 139, 021102 (2013);
D. Kats, J. Chem. Phys. 141, 061101 (2014);
D. Kats, D. Kreplin, H.-J. Werner, and F. R. Manby, J. Chem. Phys. 142, 064111 (2015).

Quasi-Variational Coupled-Cluster (QVCCD, OQVCCD, BQVCCD):
J. B. Robinson and P. J. Knowles, J. Chem. Phys. 136, 054114 (2012), doi:10.1063/1.3680560; J. B. Robinson and P. J. Knowles, Phys. Chem. Chem. Phys. 14, 6729-6732 (2012), doi:10.1039/C2CP40698E.

Equation-of-Motion Coupled Cluster Singles and Doubles (EOM-CCSD):
T. Korona and H.-J. Werner, J. Chem. Phys. 118, 3006 (2003).

Open-shell coupled-cluster (RCCSD, UCCSD):
P. J. Knowles, C. Hampel and H.-J. Werner, J. Chem. Phys. 99, 5219 (1993); Erratum: J. Chem. Phys. 112, 3106 (2000).

Local PNO-LMP2 and PNO-CCSD(T) methods:
H.-J. Werner, G. Knizia, C. Krause, M. Schwilk, and M. Dornbach, J. Chem. Theory Comput. 11, 484 (2015).
M. Schwilk, D. Usvyat, and H.-J. Werner, J. Chem. Phys. 142, 121102 (2015).
C. Köppl and H.-J. Werner, J. Chem. Phys. 142, 164108 (2015).
Q. Ma and H.-J. Werner, J. Chem. Theory Comput. 11, 5291 (2015).
H.-J. Werner, J. Chem. Phys. 145, 201101 (2016).
M. Schwilk, Q. Ma, C. Köppl, and H.-J. Werner, J. Chem. Theory Comput. 13, 3650 (2017).
Q. Ma, M. Schwilk, C. Köppl, and H.-J. Werner, J. Chem. Theory Comput. 13, 4871 (2017).
Q. Ma and H.-J. Werner, J. Chem. Theory Comput. 14, 198 (2018).
Q. Ma and H.-J. Werner, WIREs Comput. Mol. Sci. 2018;e1371.
Ch. Krause and H.-J. Werner, J. Chem. Theory Comput. 15, 987, (2019).
Q. Ma and H.-J. Werner, J. Chem. Theory Comput. 15, 1044 (2019).
Q. Ma and H.-J. Werner, J. Chem. Theory Comput. 15, 1044 (2019).
Q. Ma and H.-J. Werner, J. Chem. Theory Comput. 16, 3135 (2020).

F. Menezes, D. Kats, and H.-J. Werner, J. Chem. Phys. 145, 124115 (2016).
D. Kats and H.-J. Werner, J. Chem. Phys. 150, 214107 (2019).

Local PAO-MP2 (LMP2):
G. Hetzer, P. Pulay, and H.-J. Werner, Chem. Phys. Lett. 290, 143 (1998)
M. Schütz, G. Hetzer, and H.-J. Werner, J. Chem. Phys. 111, 5691 (1999)
G. Hetzer, M. Schütz, H. Stoll, and H.-J. Werner, J. Chem. Phys. 113, 9443 (2000)
See also references on energy gradients, density fitting, and explicitly correlated methods.

Local Coupled Cluster methods (PAO-LCCSD, PAO-LQCISD, PAO-LMP4):

M. Schütz and H.-J. Werner, J. Chem. Phys. 114, 661 (2001);
M. Schütz, Phys. Chem. Chem.Phys. 4, 3941 (2002).

  • DF-LCCSD(T): H.-J. Werner and M. Schütz, J. Chem. Phys. 135, 144116 (2011).
  • Local Triple excitations: M. Schütz and H.-J. Werner, Chem. Phys. Lett. 318, 370 (2000);

M. Schütz, J. Chem. Phys. 113, 9986 (2000).
M. Schütz, J. Chem. Phys. 116, 8772 (2002).

  • OSV-LCCSD(T): J. Yang, G. K. L. Chan, F. R. Manby, M. Schütz, and H.-J. Werner, J. Chem. Phys. J. Chem. Phys. 136, 144105 (2012); M. Schütz, J. Yang, G. K. L. Chan, F. R. Manby, and H.-J. Werner J. Chem. Phys. 138, 054109 (2013).
  • close pair treatment beyond LMP2:

O. Masur, D. Usvyat and M. Schütz, J. Chem. Phys. 139, 164116 (2013); M. Schütz, O. Masur and D. Usvyat, J. Chem. Phys. 140, 244107 (2014)

See also references on energy gradients, density fitting, and explicitly correlated methods.

Local methods for excited states:

  • LCC2 response: D. Kats, T. Korona and M. Schütz, J. Chem. Phys. 125, 104106 (2006).

D. Kats, T. Korona and M. Schütz, J. Chem. Phys. 127, 064107 (2007).
D. Kats and M. Schütz, J. Chem. Phys. 131, 124117 (2009).
D. Kats and M. Schütz, Z. Phys. Chem. 224, 601 (2010).
K. Freundorfer, D. Kats, T. Korona and M. Schütz, J. Chem. Phys. 133, 244110 (2010).

  • LCC2 response and ADC(2) orbital relaxed properties and nuclear gradients:

K. Ledermüller, D.Kats and M. Schütz, J. Chem. Phys. 139, 084111 (2013).
K. Ledermüller and M. Schütz, J. Chem. Phys. 140, 164113 (2014).
M. Schütz, J. Chem. Phys. 142, 214103 (2015).

  • EOM-LCCSD: T. Korona and H.-J. Werner J. Chem. Phys. 118, 3006 (2003).

Density fitting methods:

  • DFT, Poisson fitting: F. R. Manby, P. J. Knowles, and A. W. Lloyd,

J. Chem. Phys. 115, 9144 (2001).

  • DF-HF: R. Polly, H.-J. Werner, F. R. Manby, and Peter J. Knowles,

Mol. Phys. 102, 2311 (2004).

  • DF-MP2, DF-LMP2: H.-J. Werner, F. R. Manby, and P. J. Knowles,

J. Chem. Phys. 118, 8149 (2003).

  • DF-LMP2 gradients: M. Schütz, H.-J. Werner, R. Lindh and F. R. Manby,

J. Chem. Phys. 121, 737 (2004).

  • DF-LCCSD: M. Schütz and F. R. Manby,

Phys. Chem. Chem. Phys. 5, 3349 (2003)

  • DF-LCCSD(T): H.-J. Werner and M. Schütz, J. Chem. Phys. 135, 144116 (2011).
  • DF-MCSCF, DF-CASPT2: W. Győrffy, T. Shiozaki, G. Knizia, and H.-J. Werner, J. Chem. Phys. 138, 104104 (2013).

Explicitly correlated MP2 methods:

A. J. May and F. R. Manby, J. Chem. Phys. 121, 4479 (2004);
H.-J. Werner and F. R. Manby, J. Chem. Phys. 124, 054114 (2006);

  • DF-MP2-F12: H.-J. Werner, T. B. Adler, and F. R. Manby, J. Chem. Phys. 126, 164102 (2007).
  • DF-RMP2-F12: G. Knizia and H.-J. Werner, J. Chem. Phys. 128, 154103 (2008).
  • DF-LMP2-F12: F. R. Manby H.-J. Werner, T. B. Adler, and A. J. May, J. Chem. Phys. 124, 094103 (2006);

H.-J. Werner, T. B. Adler, and F. R. Manby, J. Chem. Phys. 126, 164102 (2007);
T. B. Adler, H.-J. Werner, and F. R. Manby, J. Chem. Phys. 130, 054106 (2009).

Explicitly correlated coupled-cluster methods:

  • CCSD(T)-F12: T. B. Adler, G. Knizia, and H.-J. Werner, J. Chem. Phys. 127, 221106 (2007);

H.-J. Werner, G. Knizia, and F. R. Manby, Mol. Phys. 109, 407 (2011).

  • UCCSD(T)-F12: G. Knizia, T. B. Adler, and H.-J. Werner, J. Chem. Phys. 130, 054104 (2009).
  • LCCSD-F12: H.-J. Werner, J. Chem. Phys. 129, 101103 (2008);

T. B. Adler and H.-J. Werner, J. Chem. Phys. 130, 241101 (2009);
C. Krause and H.-J. Werner, Phys. Chem. Chem. Phys., in press (2012), DOI 10.1039/c2cp40231a.

  • DF-LCCSD(T)-F12: T. B. Adler and H.-J. Werner, J. Chem. Phys. 135, 144117 (2011).
  • Review: H.-J. Werner, T. B. Adler, G. Knizia, and F. R. Manby, in Recent Progress in Coupled-Cluster Methods, Eds.: P. Cársky, J. Paldus, and J. Pittner, Springer (2010).

Explicitly correlated multi-reference methods:

  • CASPT2-F12: T. Shiozaki and H.-J. Werner, J. Chem. Phys. 133, 141103 (2010).
  • MRCI-F12: T. Shiozaki, G. Knizia, and H.-J. Werner, J. Chem. Phys. 134, 034113 (2011).
  • MS-MRCI-F12: T. Shiozaki and H.-J. Werner, J. Chem. Phys. 134, 184104 (2011);
  • Review: T. Shiozaki and H.-J. Werner, Mol. Phys. 111, 607 (2013)

Rangehybrid methods:
T. Leininger, H. Stoll, H.-J. Werner, and A. Savin, Chem. Phys. Lett. 275, 151 (1997).
J.G. Ángyán, I.C. Gerber, A. Savin, and J. Toulouse, Phys. Rev. A 72, 012510 (2005).
E. Goll, H.-J. Werner, and H. Stoll, Phys. Chem. Chem. Phys. 7, 3917 (2005).
E. Goll, H.-J. Werner, H. Stoll, T. Leininger, P. Gori-Giorgi, and A. Savin, Chem. Phys. 329, 276 (2006).
E. Goll, H.-J. Werner, and H. Stoll, Chem. Phys. 346, 257 (2008).
E. Goll, H.-J. Werner, and H. Stoll, Z. Phys. Chem. 224, 481 (2010).
S. Chabbal, H. Stoll, H.-J. Werner, and T. Leininger, Mol. Phys. 108, 3373 (2010).

Full CI (FCI):
P. J. Knowles and N. C. Handy, Chem. Phys. Lett. 111, 315 (1984);
P. J. Knowles and N. C. Handy, Comp. Phys. Commun. 54, 75 (1989).

Distributed Multipole Analysis (DMA):
A. J. Stone, Chem. Phys. Lett. 83, 233 (1981).

Valence bond:
D. L. Cooper, T. Thorsteinsson, and J. Gerratt, Int. J. Quant. Chem. 65, 439 (1997);
D. L. Cooper, T. Thorsteinsson, and J. Gerratt, Adv. Quant. Chem. 32, 51-67 (1998).
See also ”An overview of the CASVB approach to modern valence bond calculations”,
T. Thorsteinsson and D. L. Cooper, in Quantum Systems in Chemistry and Physics. Volume 1: Basic problems and models systems, eds. A. Hernández-Laguna, J. Maruani, R. McWeeny, and S. Wilson (Kluwer, Dordrecht, 2000); pp 303-26.

Relativistic corrections using the Douglas-Kroll Hamiltonian and eXact-2-Component Hamiltonian:
D. Peng and M. Reiher, Theor. Chem. Acc. 131, 1081 (2012);
M. Reiher, A. Wolf, JCP 121, 2037–2047 (2004);
M. Reiher, A. Wolf, JCP 121, 10945–10956 (2004);
A. Wolf, M. Reiher, B. A. Hess, JCP 117, 9215–9226 (2002).

Spin-orbit coupling:
A. Berning, M. Schweizer, H.-J. Werner, P. J. Knowles, and P. Palmieri, Mol. Phys. 98, 1823 (2000).

Diabatization procedures:
H.-J. Werner and W. Meyer, J. Chem. Phys. 74, 5802 (1981);
H.-J. Werner, B. Follmeg, and M. H. Alexander, J. Chem. Phys. 89, 3139 (1988);
D. Simah, B. Hartke, and H.-J. Werner, J. Chem. Phys. 111, 4523 (1999).

DF-DFT-SAPT:
A. Heßelmann, G. Jansen and M. Schütz, J. Chem. Phys. 122, 014103 (2005).

NMR shielding tensors, magnetizability, and rotational g-tensor:
S. Loibl, F.R. Manby, and M. Schütz, Mol. Phys. 108, 1362 (2010); S. Loibl and M. Schütz, J. Chem. Phys. 137, 084107 (2012) S. Loibl and M. Schütz, J. Chem. Phys. 141, 024108 (2014)