[molpro-user] Optimization with constraint in z-matrix
Sebastian Marquardt
sebastian.marquardt at epfl.ch
Thu Apr 8 09:43:28 BST 2010
Hi,
the complete input file is attached. I hope it has sufficient comments
to be self-explanatory.
Regards,
Sebastian Marquardt
Le mercredi 07 avril 2010 à 15:06 +0200, arimet @eie.gr a écrit :
> Not sure what you try to do. Can you send the input file?
> A. Metropoulos
>
> Original Message:
> -----------------
> From: Sebastian Marquardt sebastian.marquardt at epfl.ch
> Date: Mon, 05 Apr 2010 12:20:25 +0200
> To: molpro-user at molpro.net
> Subject: [molpro-user] Optimization with constraint in z-matrix
>
>
> Dear Molpro-list,
>
> I wanted to do a geometry optimization with a constraint in a z-matrix.
> The molecular architecture should be something like
> 3
> 1 2
> where the bond angle between atom 1, 2 and 3 depends directly on the
> optimised distance of atom 1 to 3 r(13) [=r(23)]. The aim was to observe
> the movement of 3 over a range of different r(12). Due to the reason,
> that the direct insertion of the needed trigonometric function in the
> zmatrix resulted in an error (I don't know why, because with standard
> operators it works), I tried to switch, after giving a zmatrix as input,
> to internal coordinates to use the constraints in optg but it crashed as
> well.
> In the end I started not to use this constraint and to optimize also
> over the angle, although it is in my opinion absolutely senseless, since
> if one knows the distances r(12) and r(13)=r(23) the triangle is
> completely determined and the angle is fix. These more or less full
> active optimizations crashed as well, but as I guess due to other
> reasons (error msg: "No gradient found").
>
> Now, could you help me to find out, how it is possible to introduce
> constraints in a z-matrix?
>
> Best regards,
>
> Sebastian Marquardt
>
> _______________________________________________
> Molpro-user mailing list
> Molpro-user at molpro.net
> http://www.molpro.net/mailman/listinfo/molpro-user
>
> --------------------------------------------------------------------
> mail2web.com - Microsoft® Exchange solutions from a leading provider -
> http://link.mail2web.com/Business/Exchange
>
>
-------------- next part --------------
***, (HAu)2
!==== Computer Specifics ===================
memory,950,m
!===========================================
!==== Basis-Set definition =================
basis={
spd,H,aug-cc-pVTZ;c;
ecp,Au,ecp60mdf
spdfg,Au,aug-cc-pVTZ-PP;c}
!============================================
!==== Global Variables ======================
TOKCAL=627.5094706 !General Var
dih = 0.000 degree !Geometry Var
rHAu = 1.5237 ang
distancesAuAu=[2.5,2.6,2.7,2.8,2.9,3.0,3.1,3.2,3.3,3.5,4.0,4.5,5.0]
!============================================
!==== Loop for distances ====================
i=0 !setting counter
do ir=1,#distances !starting loop over distance vector
i=i+1 !increment counter
rAuAu(i)=distancesAuAu(ir) !setting distance vector rAuAu
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!! Dimer Calculation !!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!==== Z-Matrix ==============================
geometry={angstrom;
au1;
h2, au1, rHAu;
au3, au1, rAuAu, h2, ASIN(rAuAu/(2*rHAu));
h4, au3, rHAu, h2, 2*ASIN(rAuAu/(2*rHAu)), au1, dih}
!============================================
symmetry,auto,noorient;
text,calculation for complex
rhf; !RHF for total system
rhf;
rccsd(t); !rccsd(t) for total system
{optg; !Geometry optimization with active rHAu
active,rHAu;
}
etot(i)=(energy*TOKCAL) !save energy in variable e_tot
!============================================
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
distHAu(i) = rHAu !saving distance rHAu
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!! Monomer Calculation !!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!==== Monomer Calculation CP 1 ==============
symmetry,nosym;
text, cp calculation for (HAu)2
dummy
dummy,au3,h4 !make 1 mol a dummy center
rhf; !RHF for second mol
rccsd(t); !RCCSD(T) for second mol
emc(i)=(energy*TOKCAL) !save energy in variable e_2
!============================================
text, seperate calculation for HAu
!==== Monomer Calculation no CP =============
symmetry,auto;
geometry={angstrom;
au1;
h2, au1, rHAu}
rhf; !RHF for single mol
rccsd(t); !RCCSDT for second mol
emuc(i)=(energy*TOKCAL) !save energy in variable emuc
!============================================
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!==== Energy calculations ===================
eintuc(i)=etot(i)-2*emuc !calculating uncorrected energy
eintc(i)=etot(i)-2*emc(i) !calculating corrected energy
deltae(i)=eintuc(i)-eintc(i) !calculating difference
ecp(i)=2*emc(i)-2*emuc !calculating counterpoise correction
!============================================
!==== Table plotting procedure ==============
table, rAuAu, distHAu, etot, emc, emuc, eintuc, eintc, deltae, ecp
heading, R(AuAu), R(HAu), TOTAL_ENERGY, SINGLE_CORR, SINGLE_UNCORR, BONDING_ENERGY_UC, BONDING_ENERGY_C, DELTA_CORR, COUNTERPOISE CORR
save,energies_raute.tab
title,Bonding Interactions in rhombic (HAu)2 complexes
!============================================
enddo
---
More information about the Molpro-user
mailing list